Abstract

Two areas of Chesapeake Bay, Colgate Creek in Baltimore Harbor and Eastern Bay, are presently under study, with routine sampling of water and sediment for petroleum-degrading microorganisms (bacteria, yeasts, and fungi) by direct plating and enrichment culture. Selected physical and chemical parameters are recorded for each sampling site, and water and sediment samples are extracted for hydrocarbons. Numbers of petroleum-degrading microorganisms enumerated by direct plating were found to correlate with the concentration of benzene-extractable material and were higher for the Colgate Creek than for the Eastern Bay site. Petroleum-degrading microorganisms were isolated from water and sediment samples at environmental temperatures of 0°, 5°, and 10°C.A salts medium supplemented with nitrate and phosphate was used to provide optimum conditions for petroleum degradation, whereas Chesapeake Bay water was used to simulate natural environmental conditions. Use of a model petroleum permitted quantitative measurement of utilization of individual hydrocarbons ranging in complexity from simple alkanes to polynuclear aromatic hydrocarbons. Higher growth yields and maximum hydrocarbon degradation was observed for microorganisms in the salts medium at 0°, 5°, and 10°C, although significant quantities of hydrocarbons were utilized in some samples grown in a medium for which Chesapeake Bay water was the diluent. Bacterial hydrocarbon degradation accounted for most of the model petroleum utilization at 0° and 5°C. However, oscillations of bacterial populations, with significant growth of yeasts, was observed at 10°C. Photomicroscopy and scanning electron microscopy revealed aggregates of bacteria, yeasts, and fungi associated with oil globules. From preliminary identification and classification of the hydrocarbon-utilizing bacteria, members of the generaVibrio, Aeromonas, Pseudomonas, andAcinetobacter were present in the enrichment cultures. From results of this study, it is concluded that utilization of model petroleum at low temperatures is a function of the types and numbers of microorganisms present in an original inoculum taken from the natural environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call