Abstract
The microbial synthesis of environment-friendly poly(3-hydroxybutyrate--co-3-hydroxyvalerate), PHBV, has been performed by using an alkaliphilic microorganism, Alkaliphilus oremlandii OhILAs strain (GenBank Accession number NR_043674.1), at pH 8 and at a temperature of 30-32°C through the biodegradation of linseed oil-based elastomer. The yield of the copolymer on dry cell weight basis is 90%. The elastomers used for the biodegradation have been synthesized by cationic polymerization technique. The yield of the PHBV copolymer also varies with the variation of linseed oil content (30-60%) in the elastomer. Spectroscopic characterization ((1)H NMR and FTIR) of the accumulated product through biodegradation of linseed oil-based elastomers indicates that the accumulated product is a PHBV copolymer consisting of 13.85mol% of 3-hydroxyvalerate unit. The differential scanning calorimetry (DSC) results indicate a decrease in the melting (T m) and glass transition temperature (T g) of PHBV copolymer with an increase in the content of linseed oil in the elastomer, which is used for the biodegradation. The gel permeation chromatography (GPC) results indicate that the weight average molecular weight (M w) of PHBV copolymer decreases with an increasing concentration of linseed oil in the elastomer. The surface morphology of the elastomer before and after biodegradation is observed under scanning electron microscope (SEM) and atomic force microscope (AFM); these results indicate about porous morphology of the biodegraded elastomer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.