Abstract

Chloroform (CF) is largely produced by both anthropogenic and natural sources. It is detected in ground and surface water sources and it represents the most abundant halocarbon in the atmosphere. Microbial CF degradation occurs under both aerobic and anaerobic conditions. Apart from a few reports describing the utilization of CF as a terminal electron acceptor during growth, CF degradation was mainly reported as a cometabolic process. CF aerobic cometabolism is supported by growth on short-chain alkanes (i.e., methane, propane, butane, and hexane), aromatic hydrocarbons (i.e., toluene and phenol), and ammonia via the activity of monooxygenases (MOs) operatively divided into different families. The main factors affecting CF cometabolism are (1) the inhibition of CF degradation exerted by the growth substrate, (2) the need for reductant supply to maintain MO activity, and (3) the toxicity of CF degradation products. Under anaerobic conditions, CF degradation was mainly associated to the activity of methanogens, although some examples of CF-degrading sulfate-reducing, fermenting, and acetogenic bacteria are reported in the literature. Higher CF toxicity levels and lower degradation rates were shown by anaerobic systems in comparison to the aerobic ones. Applied physiological and genetic aspects of microbial cometabolism of CF will be presented along with bioremediation perspectives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.