Abstract

Deep geologic repositories (DGR) in Canada are designed to contain and isolate low- and intermediate-level radioactive waste. Microbial degradation of the waste potentially produces methane, carbon dioxide and hydrogen gas. The generation of these gases increase rock cavity pressure and limit water ingress which delays the mobility of water soluble radionuclides. The objective of this study was to measure gas pressure and composition over 7 years in experiments containing cellulosic material with various starting conditions relevant to a DGR and to identify micro-organisms generating gas. For this purpose, we conducted experiments in glass bottles containing (1) wet cellulosic material, (2) wet cellulosic material with compost Maker, and (3) wet cellulosic material with compost Accelerator. Results demonstrated that compost accelerated the pressure build-up in the containers and that methane gas was produced in one experiment with compost and one experiment without compost because the pH remained neutral for the duration of the 464 days experiment. Methane was not formed in the other experiment because the pH became acidic. Once the pressure became similar in all containers after 464 days, we then monitored gas pressure and composition in glass bottle containing wet cellulosic material in (1) acidic conditions, (2) neutral conditions, and (3) with an enzyme that accelerated degradation of cellulose over 1965 days. In these experiments, acetogenic bacteria degraded cellulose and produced acetic acid, which acidity suppressed methane production. Microbial community analyses suggested a diverse community of archaea, bacteria and fungi actively degrading cellulose. DNA analyses also confirmed the presence of methanogens and acetogens in our experiments. This study suggests that methane gas will be generated in DGRs if pH remains neutral. However, our results showed that microbial degradation of cellulose not only generated gas, but also generated acidity. This finding is important as acids can limit bentonite swelling and potentially degrade cement and rock barriers, thus this requires consideration in the safety case as appropriate.

Highlights

  • Nuclear power plant operations produce low- and intermediatelevel radioactive waste (LILW)

  • The rate of change of pressure within the un-amended test container displayed an initial decline in gas pressure that lasted 80 days, followed by a slight increase starting at about day 130, which leveled off at 115 kPa for the 120 days before displaying another period of increasing pressure to 130 kPa at day 464 (Figure 1)

  • Compared to the cellulosic material without compost added, the cellulosic material amended with the additive that included enzymes within its composition (Compost Accelerator, Figure 1) displayed the quickest onset of gas pressure and the fastest rate of gas pressure rise

Read more

Summary

Introduction

Nuclear power plant operations produce low- and intermediatelevel radioactive waste (LILW). Cement backfill is added to provide additional isolation of the waste (Aikas and Anttila, 2008; Olsson et al, 2008), which creates hyper alkaline conditions in the repository For these facilities, the safety cases for disposal of LILW relied on safety assessment models predicting that the depth of the repositories would isolate the radionuclides in the waste, and the rock formation and engineered barriers (i.e., cement backfill surrounding the waste and shaft seal) would contain the radionuclides in the waste for several hundred thousand years. Considering the time scale of these model predictions, uncertainties needed to be adequately quantified so that modeling provided a sufficient margin of safety to account for these uncertainties

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.