Abstract

This study explores a novel conversion of CO2 into the chemicals hydroxyectoine and ectoine, which are compounds with high retail values in the pharmaceutical industry. Firstly, 11 species of microbes able to use CO2 and H2 and that have the genes for ectoines synthesis (ectABCD) were identified through literature search and genomic mining. Laboratory tests were then conducted to ascertain the capacity of these microbes to produce ectoines from CO2. Results showed that the most promising bacteria for CO2 to ectoines bioconversion areHydrogenovibrio marinus, Rhodococcus opacus, and Hydrogenibacillus schlegelii.Upon salinity and H2/CO2/O2 ratio optimization,H. marinus accumulated 85 mg of ectoine g biomass−1. Interestingly, R.opacusand H. schlegelii mainly produced hydroxyectoine (53 and 62 mg g biomass−1), which has a higher commercial value. Overall, these results constitute the first proof of a novel valorization platform of CO2 and lay the foundation for a new economic niche aimed at CO2 recircularization into pharmaceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call