Abstract

The sequencing batch reactor (SBR) activated sludge process is a well-established technology for sewage treatment. One of the drawbacks of SBRs, however, total nitrogen (TN) removals is insufficient. By means of introducing four improvements, including semi-fixed biofilm carrier, sludge elevation mixing and change for the mode of influent and effluent, compliant standard for TN discharge was obtained in this novel SBR configuration during low- and high-strength sewage load. To illustrate the microbial compositions and functions of the attached biofilm on semi-fixed carrier and the suspended aggregates, as well as the nitrogen removal pathway, high throughput 16S rRNA gene amplicon sequencing, PICRUSt2 algorithm, and KEGG database were applied. The results revealed that (i) the microbial communities from suspended aggregates and biofilm samples were significantly different from each other; (ii) during low-strength sewage loads, TN removal was mainly by nitrification-denitrification. The suspended aggregates was responsible for denitrification, while the biofilm was focused on ammonium oxidation; (iii) during high-strength sewage loads, function of nitrate reductase from suspended aggregates was faded, and anammox and N assimilation by biofilm became dominant. Meanwhile, TN removal referring to the formation of L-glutamine via assimilation was the main pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call