Abstract

Gray sufu, a traditional fermented food derived from soybeans, undergoes a complex fermentation process. This study aimed to investigate the dynamics of the microbial community during sufu fermentation and its relationship with key quality characteristics. Through systematic sampling of sufu at different phases of fermentation, 143 bacterial genera and 84 fungal genera involved in the process were identified. Among these, Chishuiella, Enterococcus, Lactococcus, and Weissella emerged as the predominant bacterial communities. After seven days of ripening fermentation, Trichosporon supplanted Diutina as the predominant fungus, accounting for more than 84% of all fungi. Using redundancy analysis, significant correlations between microbiota and physicochemical properties were uncovered. Chishuiella and Empedobacter displayed positive relationships with pH, soluble protein, and amino nitrogen content. In addition, five biogenic amines were detected, and it was determined that tyramine accounted for more than 75% of the total biogenic amines in the final gray sufu products. Spearman correlation analysis revealed significant positive relationships between Lactococcus, Enterococcus, Tetragenococcus, Halanaerobium, and Trichosporon and the five biogenic amines examined. These findings shed light on the complex interactions between microorganisms and biogenic amines during the fermentation of gray sufu, thereby facilitating the development of microbial regulation strategies for better quality control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call