Abstract

The anaerobic-anoxic sequence batch reactor (A2SBR) was applied to achieve nitrogen and phosphorus removal in an energy-saving sewage treatment system involving an up-flow anaerobic sludge blanket combined with a down-flow hanging sponge reactor to treat municipal sewage. After sludge acclimation, the A2SBR showed satisfactory denitrification and phosphorus removal performance with total phosphate and nitrate concentrations of the effluent of 8.4 ± 3.4 mg-N L⁻¹ and 0.9 ± 0.6 mg-P L⁻¹, respectively. 16S rRNA gene sequence and fluorescence in situ hybridization analyses revealed that 'Candidatus Accumulibacter phosphatis' was the dominant phosphate-accumulating micro-organism. Although a competitive bacterium for polyphosphate-accumulating organisms, 'Ca. Competibacter phosphatis', was not detected, Dechloromonas spp. were abundant. The ppk1 gene sequence analysis showed that the type II lineage of 'Ca. Accumulibacter' was dominant. The results suggest that denitrification and phosphorus removal in the A2SBR could be achieved by cooperative activity of 'Ca. Accumulibacter' and nitrate-reducing bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.