Abstract

Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.

Highlights

  • Tropical peat swamp forests (TPSF) are among the most exploited but least scientifically studied ecosystems in the world

  • To the best of our knowledge, this is the first cultureindependent metabarcoding study investigating the impact of tree species and depth on the microbial diversity and composition in a Southeast Asian TPSF

  • This study illustrated significant role depth plays in microbial community structure, and we recommend the inclusion of this factor in future microbial ecological research in peatlands ecosystems

Read more

Summary

Introduction

Tropical peat swamp forests (TPSF) are among the most exploited but least scientifically studied ecosystems in the world. They are found extensively in Southeast Asia (about 56% of total tropical peatlands in the world), in Indonesia (∼47%) and Malaysia (∼6%) (Page et al, 2011). The substrates of tropical and northern peatlands share similarities with respect to waterlogging, acidity and low levels of nutrients, but the origins of the peat differ – in the tropics, they are derived from plant debris such as leaves, roots, trunks and branches compared with the mosses, grasses, sedges and shrubs of northern peatlands. Its annual accumulation rate is estimated at 2–5 mm, which is much faster than in boreal peatlands due to high productivity, and there have been reports of peat layers up to 20 m thick (Yule, 2010)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call