Abstract

The microbial community structure changes of an aged-coal-tar soil contaminated with polycyclic aromatic hydrocarbons (PAHs) were investigated during simulated bioremediation at the laboratory-scale using an in-vessel composting approach. The composting reactors were operated using a logistic three-factor factorial design with three temperatures ( T=38, 55 or 70 °C), four soil to green-waste amendment ratios (S:GW=0.6:1, 0.7:1, 0.8:1 or 0.9:1 on a dry weight basis) and three moisture contents (MC=40%, 60% or 80%). Relative changes in microbial populations were investigated by following the dynamics of phospholipid fatty acid (PLFA) signatures using a 13C-labeled palmitic acid internal standard and sensitive GC/MS analysis during in-vessel composting over 98 days. The results of this investigation indicated that fungal to bacterial PLFA ratios were significantly influenced by temperature ( p<0.05), and Gram-positive to Gram-negative bacterial ratios were significantly influenced by temperature ( p<0.001) and S:GW ratio ( p<0.01) during in-vessel composting. Additionally, the Gram-positive to Gram-negative bacterial ratios were correlated to the extent of PAH losses ( p<0.005) at 70 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.