Abstract

A process involving the use of membrane bioreactor seeded with aerobic granular sludge (GMBR) was applied to the treatment of sewage containing pharmaceuticals and personal care products (PPCPs). The removal effects of five kinds of medicines in the reactor were investigated, and the microbial communities were constructed by polymerase chain reaction and denaturing gradient gel electrophoresis. We also determined the effects of different sludge retention and hydraulic retention times (SRT and HRT, respectively) and influent organic loading on GMBR's efficiency in processing sewage containing PPCPs. The removal effects of the GMBR on five PPCPs varied. Using the GMBR, the removal rates of prednisolone, naproxen and norfloxacin were 98.56, 84.02 and 87.85%, respectively. The removal rates of sulfamethoxazole and ibuprofen were 77.83 and 63.32%, respectively. In the system, PPCP drugs had relatively less effect on microbial diversity. A certain succession was observed in the structural variation of microbial species in the GMBR. Microorganisms that can degrade PPCPs gradually accumulated, and antibiotic-resistant microorganisms, such as Firmicutes sp., Aeromonas sp. and Nitrospira sp., served a key function in the treatment of sewage containing antibiotics. Long SRT and HRT during the GMBR process can facilitate the removal of most PPCPs. The system efficiently removed PPCPs at high influent organic loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call