Abstract

Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.

Highlights

  • Above 65 °C, suggesting that their degradative activities during the thermophilic stages of composting are minor compared to that of bacteria[13,14]

  • RRNA gene amplicon, and metatranscriptome high-throughput sequencing of time-series samples collected at the composting facility of São Paulo Zoo Park, São Paulo, Brazil

  • We found hits to six carbohydrate-active enzyme classes and associated modules: glycoside hydrolases (GHs) (29.5–34.2%), carbohydrate-binding modules (CBM) (21.5–39.1%), glycosyl transferases (GTs) (15.6–27.1%), carbohydrate esterases (CEs) (10.3–15.3%), polysaccharide lyases (PLs) (0.8–2.4%) and auxiliary activities (AAs) (1.6–8.4%) (Supplementary Fig. S11)

Read more

Summary

Introduction

Above 65 °C, suggesting that their degradative activities during the thermophilic stages of composting are minor compared to that of bacteria[13,14]. The goal of this study was to perform a comprehensive investigation of the structure, dynamics, and metabolic functions of the microbiota in a thermophilic composting operation at the São Paulo Zoo Park, which is located within the urban area of the São Paulo city (Brazil) and includes a remnant Atlantic rain forest patch. We extend the previous work in three important ways: first, in addition to shotgun sequencing data, we obtained 16S rRNA amplicon data; second, we obtained metatranscriptomics (RNA-seq) data; and third, these data were generated based on several time-series samples of the 99-day-long process To our knowledge, this is the first study combining all three data types generated from time-series samples from a full-scale composting operation

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.