Abstract

The degradation of alpine meadows on the Qinghai–Tibet Plateau is a major issue affecting both the ecology and the economy. Microorganisms play an important role in soil nutrient cycling and the regulation of ecosystem function. This study aimed to investigate the species composition and diversity of microbial communities and understand the response of microbial communities to changes in physicochemical properties resulting from meadow degradation. In this study, the soil bacterial and fungal communities’ composition and diversity of alpine meadows of degradation gradient were sequenced by high-throughput sequencing. During the process of grassland degradation, there were 59 bacterial taxa and 29 fungal taxa showing significant differences. The relative abundance of meadow pathogenic fungi significantly increased (p < 0.05). PICRUSt2 analysis showed a decrease in synthesis-related functional gene abundance and an increase in metabolism-related functional gene abundance. FUNGuild analysis showed that symbiotic and saprophytic nutrient fungi decreased significantly (p < 0.05). The soil nutrient cycling was mainly influenced by the beta diversity of microbial communities. Grassland degradation affects soil structure, thereby affecting the diversity of soil microbial composition and functional soil nutrient content. This work reveals the response of microbial communities to the degradation of alpine meadows and their impact on nutrient cycling, providing theoretical support for the protection and sustainable development of alpine meadows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call