Abstract

Microorganisms colonizing modern water-based metalworking fluids (MWFs) have been implicated in various occupational respiratory health hazards to machinists. An understanding of the exposure risks from specific microbial groups/genera/species (pathogenic or allergenic) and their endotoxins and the need for strategies for effective, timely fluid management warrant real-time extended tracking of the establishment of microbial diversity and the prevailing fluid-related factors. In the current study, the microbial community composition, succession, and dynamics of a freshly recharged industrial semi-synthetic MWF operation was tracked in real-time over a period of 50 weeks, using a combination of microbiological and molecular approaches. Substantial initial bacterial count (both viable and non-viable) even in the freshly recharged MWF pointed to the inefficiency of the dumping, cleaning, and recharge (DCR) process. Subsequent temporal analysis using optimized targeted genus/group-specific qPCR confirmed the presence of Pseudomonads, Enterics, Legionellae, Mycobacteria (M. immunogenum), Actinomycetes, and Fungi. In contrast, selective culturing using commercial culture media yielded non-specific isolates and collectively revealed Gram-negative (13 genera representing 19 isolates) and Gram-positive (2 genera representing 6 isolates) bacteria and fungi but not mycobacteria. Citrobacter sp. and Bacillus cereus represented the most frequent Gram-negative and Gram-positive isolates, respectively, across different media and Nectria haematococca isolation as the first evidence of this fungal pathogen colonizing semi-synthetic MWF. Unbiased PCR-DGGE analysis revealed a more diverse whole community composition revealing 22 bacterial phylotypes and their succession. Surges in the endotoxin level coincided with the spikes in Gram-negative bacterial population and biocide additions. Taken together, the results showed that semi-synthetic MWF is conducive for the growth of a highly diverse microbial community including potential bacterial and fungal pathogens, the current DCR practices are inefficient in combating microbial reestablishment, and the practice of periodic biocide additions facilitates the build-up of endotoxins and non-viable bacterial population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call