Abstract

Microbial community changes during start-up operation of flowerpot-using fed-batch reactors for composting of household biowaste were studied by quinone profiling, rRNA-targeted fluorescence in situ hybridization (FISH) and cultivation methods. Total and plate counts of bacteria and quinone contents in the reactors increased sharply with time during the start-up period. These increase patterns had two phases; the first increase occurred during 3-4 weeks from the start of waste loading and the second increase was found during the subsequent 4 weeks. The microbial biomass was temporally reduced between the two succession phases. Ubiquinones predominated at the beginning of operation but decreased sharply with time, whereas partially saturated menaquinones became predominant at the fully acclimated stage. These data indicated that the major constituents of microbial populations changed from ubiquinone-containing Proteobacteria to Actinobacteria during the period of operation. Neighbour-joining dendrograms constructed based on the quinone profile data suggested that at least one month is required to establish a stable community structure with the Actinobacteria predominating. The characteristic population shift in the start-up process was also demonstrated by FISH probing and 16S rDNA sequence comparisons of bacterial strains isolated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.