Abstract

The methane production and the microbial community dynamics of thermophilic anaerobic co-digestion (AD) of corn stover, swine manure and effluent were conducted at total solid (TS) content of 5%, 10% and 15%, the carbon to nitrogen ratio (C/N) of 20, 30 and 40 and the effluent volumetric percentage (EVP) of 20%, 40% and 60%. For batches with 5% TS, the highest methane yield of 238.5–283.1 mL g−1 volatile solid (VS) and the specific methane productivity of 138.5–152.2 mL g−1 initial VS were obtained at the C/N ratios of 20 and 30. For the mixtures with 10% and 15% TS, the highest methane yield was 341.9 mL g−1 VS and 351.2 mL g−1 VS, respectively, when the C/N ratio of 20% and 60% EVP conditions were maintained. Co-digestion of swine manure with corn stover caused an obvious shift in microbial population, in which the archaeal population changed from 0.3% to 2.8% and the bacterial community changed from 97.2% to 99.7%. The experimental batches with the highest relative abundance of the archaeal population (2.00% of total microbial population for 5% TS, 1.74% for 10% TS and 2.76% for 15% TS) had the highest rate of methanogenesis subsequently enhancing methane production (283.08 mL g−1 VS for 5% TS, 341.91 mL g−1 VS for 10% TS and 351.23 mL g−1 VS for 15% TS). The results of microbiome analysis enabled understanding the key populations in biomethane generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.