Abstract
To understand the characteristics of heavy metal pollution and physicochemical properties caused by mining activities in mine water systems and the response of the microbial community to habitats with different contamination levels, this study selected different types of water (mining area wastewater, spoil heap area wastewater, dressing area wastewater, mine seepage water, and pond water) as the variables related to the mining activities in the water system of the Shizishan mining area in Tongling, Anhui Province. The pollution characteristics and physicochemical properties were compared, and the relationship between environmental factors and the microbial communities were analyzed. The results showed that the content of heavy metals, the physicochemical properties, and the structure and diversity of the microbial community of different types of water were significantly different in different mine areas, among which the most seriously polluted areas were the mining area, the spoil heap area, and the dressing area. There were significant differences in microbial community structure among different functional types of wastewaters, and the diversity and abundance of the microbial community in DW with the heaviest heavy metal pollution were weaker than those in the other four regions. PcoA analysis showed that samples of similar water types had similar clustering. Spearman correlation heat map analysis and canonical correlation analysis (CCA) indicated that heavy metal pollution, pH, electrical conductivity (EC), SO2-4, and chemical oxygen demand (COD) had the greatest effect on the microbial communities in the mine water systems. Moreover, this study found that Proteobacteria, Euryarchaeota, and Bacteroidetes dominated in mine water systems, and their potential use could be explored in the future. Our results provide a better understanding of the different types of water pollution characteristics in mine water systems and the key factors that determine the microbial community structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.