Abstract

Carriers were added to a pilot-scale duckweed-based (Lemna japonica 0223) wastewater treatment system to immobilize and enhance microorganisms. This system and another parallel duckweed system without carriers were operated for 1.5years. The results indicated the addition of the carrier did not significantly affect the growth and composition of duckweed, the recovery of total nitrogen (TN), total phosphorus (TP) and CO2 or the removal of TP. However, it significantly improved the removal efficiency of TN and NH4+-N (by 19.97% and 15.02%, respectively). The use of 454 pyrosequencing revealed large differences of the microbial communities between the different components within a system and similarities within the same components between the two systems. The carrier biofilm had the highest bacterial diversity and relative abundance of nitrifying bacteria (3%) and denitrifying bacteria (24% of Rhodocyclaceae), which improved nitrogen removal of the system. An efficient N-removal duckweed system with enhanced microorganisms was established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.