Abstract

The bioconversion of renewable raw material to biogas by anaerobic microbial fermentation processes in completely stirred tank reactors (CSTR) is a valuable alternative resource of energy especially for rural areas. However, knowledge about the microorganisms involved in the degradation of plant biomass is still poor. In this study, a first analysis of the biogas-forming process within a CSTR fed continuously with fodder beet silage as mono-substrate is presented in the context of molecular data on the microbial community composition. As indicated by the conventional process parameters like pH value, content of volatile fatty acids, N:P ratio and the biogas yield, the biogas-forming process within the CSTR occurred with a stable and efficient performance. The average biogas yield based on volatile solids was 0.87 m 3 kg −1 at an organic loading rate of 1.2–2.3 kg m −3 d −1. This amounts to 94% of the theoretical maximum. In order to identify microorganisms within the CSTR, a 16S rDNA clone library was constructed by PCR amplification applying a prokaryote-specific primer set. One hundred and forty seven clones were obtained and subsequently characterized by amplified rDNA restriction analysis (ARDRA). The sequences of 60 unique ARDRA patterns were estimated in a length of approximately 800–900 bp each. Four of them were assigned to the domain Archaea and 56 to the domain Bacteria. Within the domain Archaea, all clones showed a close relationship to methanogenic species. Major bacterial groups represented in the clone library were the class Clostridia of the phylum Firmicutes (22% of all 16S rDNA clones), the class Deltaproteobacteria of the phylum Proteobacteria (24%), the class Bacilli of the phylum Firmicutes (22%) and members of the phylum Bacteroidetes (21%). Within these major groups, the highest biodiversity was found within the class Clostridia (35% of all operational taxonomic units). Members of the phyla Actinobacteria and Spirochaetes were represented only by 5 and 2 clonal sequences, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.