Abstract

Acidogenic fermentation of thermally hydrolysed waste activated sludge was carried out at laboratory scale in two reactors operated under different hydraulic retention times (HRT). Process performance was assessed in terms of volatile fatty acid (VFA) composition and yield. The diversity of the microbial population was investigated by constructing a 16S rRNA gene library and subsequent phylogenetic analysis of clones. Fluorescence in situ hybridization (FISH) was used to assess the relative abundance of different bacterial groups. Bacteroidetes and Firmicutes were the dominant taxonomic groups representing 93% of the total sequences obtained in the reactor with 4 d HRT. A similar VFA yield (0.4-0.5 g VFA(COD) g SCOD(-1)) was obtained for the HRTs tested (1-4 d), indicating that extended retention times were not useful. Within Firmicutes, Clostridia was the major group detected in the clone sequences. These had close affiliation to Sporanaerobacter acetigenes, suggesting organisms of this group were important for hydrolysis of the protein fraction of the substrate. However, FISH analysis failed to detect the major portion of the bacteria, and this is most likely due to the lack of appropriate probes. This work emphasizes the diversity of fermentative communities, and indicates that more work is needed to identify and detect the important members.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call