Abstract

Fire in wetlands is poorly understood, yet hazard reduction burns are a common management practice and bushfires are becoming increasingly prevalent because of climate change. Fire may have long-lasting implications for the microbial component of these wetland ecosystems that regulate carbon and nutrient cycling. The extremely fire-prone Blue Mountains World Heritage Area in south-eastern Australia contains hundreds of endangered peat-forming upland swamps that regularly experience both bushfires and hazard reduction burns. In a before–after control–­impact study, we surveyed the sediment microbial community of these swamps to test the impact of a low-intensity hazard reduction burn. Along with sediment pH, moisture and organic content, we measured gene abundances including those relating to carbon cycling (quantitative PCR (qPCR) of pmoA, mcrA, bacterial 16S rRNA and archaeal 16S rRNA), and bacteria community fingerprint (terminal restriction fragment length polymorphism (T-RFLP)). One year after the hazard reduction burn, there were no significant differences in the gene abundances or microbial community fingerprint that could be attributed to the fire, suggesting that the hazard reduction burn did not have a long-term impact on these microbial communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.