Abstract

Interest in microbial communities, or microbiota, of blood-feeding arthropods such as ticks (order Parasitiformes, suborder Ixodida) is increasing. Studies on tick microorganisms historically emphasized pathogens of high medical or veterinary importance. Current techniques allow for simultaneous detection of pathogens of interest, non-pathogenic symbionts, like Coxiella-LE and Francisella-LE, and microorganisms of unknown pathogenic potential. While each generation of ticks begins with a maternally acquired repertoire of microorganisms, microhabitats off and on vertebrate hosts can alter the microbiome during the life cycle. Further, blood-feeding may allow for horizontal exchange of various pathogenic microbiota that may or may not also be capable of vertical transmission. Thus, the tick microbiome may be in constant flux. The geographical spread of tick vector populations has resulted in a broader appreciation of tick-borne diseases and tick-associated microorganisms. Over the last decade, next-generation sequencing technology targeting the 16S rRNA gene led to documented snapshots of bacterial communities among life stages of laboratory and field-collected ticks, ticks in various feeding states, and tick tissues. Characterizing tick bacterial communities at population and individual tissue levels may lead to identification of markers for pathogen maintenance, and thus, indicators of disease “potential” rather than disease state. Defining the role of microbiota within the tick may lead to novel control measures targeting tick-bacterial interactions. Here, we review our current understanding of microbial communities for some vectors in the family Ixodidae (hard ticks) in North America, and interpret published findings for audiences in veterinary and medical fields with an appreciation of tick-borne disease.

Highlights

  • MICROBIOTA ASSOCIATED WITH COMMON TICK VECTORS IN NORTH AMERICAMicroorganisms living in close relationship with ticks are symbionts and can be categorized as obligate or facultative based on the potential for vertical or horizontal transmission and requirement for survival and reproduction, though these characteristics can be difficult to measure [16]

  • Specialty section: This article was submitted to Parasitology, a section of the journal Frontiers in Veterinary Science

  • Microorganisms living in close relationship with ticks are symbionts and can be categorized as obligate or facultative based on the potential for vertical or horizontal transmission and requirement for survival and reproduction, though these characteristics can be difficult to measure [16]

Read more

Summary

MICROBIOTA ASSOCIATED WITH COMMON TICK VECTORS IN NORTH AMERICA

Microorganisms living in close relationship with ticks are symbionts and can be categorized as obligate or facultative based on the potential for vertical or horizontal transmission and requirement for survival and reproduction, though these characteristics can be difficult to measure [16]. In colony-reared A. americanum nymphs, there was an overall loss in microbial diversity regardless of whether nymphal ticks molted and aged outdoors or in the laboratory; Coxiella-LE was present in all tick groups, though Rickettsia was not detected in any group [34] These findings support short-term changes in the environment as having a minimal contribution on microbial communities. Rhipicephalus sanguineus, a common tick vector found infesting dogs world-wide, will attach and transmit disease agents to other hosts, including humans This is significant considering R. sanguineus is responsible for transmission of canine bacterial and protozoan pathogens (e.g., Ehrlichia canis, Babesia vogeli, and Hepatozoon canis) and was recently implicated as the vector in a Rocky Mountain spotted fever outbreak in Arizona, where both dogs and humans were infected [46]. Wolbachia, and potential environmental contaminants including Staphylococcus spp. and Streptococcus spp. were detected [50]

BLOOD FEEDING IN DRIVING THE TICK
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.