Abstract
Microbial communities of activated sludge in an anaerobic/aerobic sequencing batch reactor (SBR) supplied with acetate as sole carbon source were analyzed to identify the microorganisms responsible for enhanced biological phosphorus removal. Various analytical methods were used such as electron microscopy, quinone, slot hybridization, and 16S rRNA gene sequencing analyses. Electron photomicrographs showed that coccus-shaped microorganisms of about 1 μm diameter dominated the microbial communities of the activated sludge in the SBR, which had been operated for more than 18 months. These microorganisms contained polyphosphate granules and glycogen inclusions, which suggests that they are a type of phosphorus-accumulating organism. Quinones, slot hybridization, and 16S rRNA sequencing analyses showed that the members of the Proteobacteria beta subclass were the most abundant species and were affiliated with the Rhodocyclus-like group. Phylogenetic analysis revealed that the two dominating clones of the beta subclass were closely related to the Rhodocyclus-like group. It was concluded that the coccus-shaped organisms related to the Rhodocyclus-like group within the Proteobacteria beta subclass were the most dominant species believed responsible for biological phosphorus removal in SBR operation with acetate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.