Abstract

ABSTRACTRecent studies suggest that magnetic susceptibility (MS) measurements can play an important role in identifying zones where microbial-mediated iron mineral transformations are occurring. Here we investigated the microbial community variations within zones of elevated MS in a petroleum hydrocarbon-contaminated aquifer near Bemidji, Minnesota, USA. Our main objective was to 1) identify the key microbial populations that may play a role in hydrocarbon degradation, 2) analyze which microbial populations could be connected to the elevated MS and 3) explore the use of non-destructive geophysical techniques as a tool to guide microbial sampling. Clone libraries based on the 16S rRNA gene revealed the presence of iron-reducing β-Proteobacteria in the vadose zone, whereas the free petroleum phase on the water table was characterized by a methanogenic consortium, in which the syntrophic δ-proteobacterium Smithella and the hydrogenotrophic Methanoregula predominated. Nonmetric multidimensional scaling (NMDS) found a close relationship between elevated MS values and the methanogenic hydrocarbon-degrading consortium. Our results suggest that magnetic susceptibility measurements can guide microbiologists to zones of active microbial biodegradation in aged petroleum spills.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call