Abstract

The high levels of diversity within tropical rainforest communities has been linked to non-random patterns of seedling mortality with several studies implicating pathogenic plant–microbe interactions in driving mortality processes. Despite the proposed importance of microorganisms in maintaining rainforest diversity, few studies have investigated soil community dynamics in relation to non-random mortality processes. A mechanistic understanding of microbial processes that help create rainforest diversity is critical for the conservation of these ecosystems. This study investigated microbial community dynamics that may underpin distance- and density-dependent mortality in the long-term forest dynamics plot, Davies Creek, in tropical Far North Queensland using community fingerprinting. We hypothesized that: (1) microbial involvement in distance-dependent seedling mortality would result in an increase in community similarity or the presence of predictor OTUs in conspecific adult tree rhizospheres, relative to physically nearby heterospecifics; (2) on average, plant species identified as having a history of distance dependent seedling mortality would exhibit more similar microbial communities among their conspecific individuals, than those that did not; and (3) dense patches of conspecific seedlings would promote the assembly of distinct soil microbial communities, which may be involved in density-dependent seedling mortality. We found no evidence of rhizosphere community similarity amongst adult plant rhizospheres. However, the presence of densely germinating seedlings altered the soil communities relative to seedling-sparse soils, enriching different OTUs depending on the patch location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.