Abstract
Both molecular analyses and culture-dependent isolation were combined to investigate the diversity of sulfate-reducing prokaryotes and explore their role in sulfides production in full-scale anaerobic digesters (Marrakech, Morocco). At global scale, using 16S rRNA gene sequencing, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Synergistetes, and Euryarchaeota were the most dominant phyla. The abundance of Archaea (3.1–5.7%) was linked with temperature. The mcrA gene ranged from 2.18 × 105 to 1.47 × 107 gene copies.g−1 of sludge. The sulfate-reducing prokaryotes, representing 5% of total sequences, involved in sulfides production were Peptococcaceae, Syntrophaceae, Desulfobulbaceae, Desulfovibrionaceae, Syntrophobacteraceae, Desulfurellaceae, and Desulfobacteraceae. Furthermore, dsrB gene ranged from 2.18 × 105 to 1.92 × 107 gene copies.g−1 of sludge. The results revealed that exploration of diversity and function of sulfate-reducing bacteria may play a key role in decreasing sulfide production, an undesirable by-product, during anaerobic digestion.
Highlights
Anaerobic digestion is an effective way of energy production through the decomposition of waste
This study focuses on the diversity and abundance of the microbial communities found in the Marrakech WWTP
The total of 10 samples were analyzed in triplicates from the WWTP of Marrakech, including primary sludge (PS), flocculated sludge (FS), and the four anaerobic digesters (D1, digester 2 (D2), digester A (DA), digester B (DB))
Summary
Anaerobic digestion is an effective way of energy production through the decomposition of waste. This technology is applied in the treatment of domestic wastewater [1] allowing an important production of energy, recovered as biogas, composed of 50–75% methane, 25–50% carbon dioxide, 0–10% nitrogen, 0–3% hydrogen sulfide, and traces of other gases [2]. Because of the wide variety of starting materials, a complex set of microbial populations, with high functional redundancy, is involved in the process of anaerobic digestion [3,4]. This is one of the reasons for the robustness of this process [5,6]. The application of next-generation sequencing technologies provides increased resolution for the study of microbial communities in large-scale anaerobic digesters [7,8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.