Abstract

Both molecular analyses and culture-dependent isolation were combined to investigate the diversity of sulfate-reducing prokaryotes and explore their role in sulfides production in full-scale anaerobic digesters (Marrakech, Morocco). At global scale, using 16S rRNA gene sequencing, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Synergistetes, and Euryarchaeota were the most dominant phyla. The abundance of Archaea (3.1–5.7%) was linked with temperature. The mcrA gene ranged from 2.18 × 105 to 1.47 × 107 gene copies.g−1 of sludge. The sulfate-reducing prokaryotes, representing 5% of total sequences, involved in sulfides production were Peptococcaceae, Syntrophaceae, Desulfobulbaceae, Desulfovibrionaceae, Syntrophobacteraceae, Desulfurellaceae, and Desulfobacteraceae. Furthermore, dsrB gene ranged from 2.18 × 105 to 1.92 × 107 gene copies.g−1 of sludge. The results revealed that exploration of diversity and function of sulfate-reducing bacteria may play a key role in decreasing sulfide production, an undesirable by-product, during anaerobic digestion.

Highlights

  • Anaerobic digestion is an effective way of energy production through the decomposition of waste

  • This study focuses on the diversity and abundance of the microbial communities found in the Marrakech WWTP

  • The total of 10 samples were analyzed in triplicates from the WWTP of Marrakech, including primary sludge (PS), flocculated sludge (FS), and the four anaerobic digesters (D1, digester 2 (D2), digester A (DA), digester B (DB))

Read more

Summary

Introduction

Anaerobic digestion is an effective way of energy production through the decomposition of waste. This technology is applied in the treatment of domestic wastewater [1] allowing an important production of energy, recovered as biogas, composed of 50–75% methane, 25–50% carbon dioxide, 0–10% nitrogen, 0–3% hydrogen sulfide, and traces of other gases [2]. Because of the wide variety of starting materials, a complex set of microbial populations, with high functional redundancy, is involved in the process of anaerobic digestion [3,4]. This is one of the reasons for the robustness of this process [5,6]. The application of next-generation sequencing technologies provides increased resolution for the study of microbial communities in large-scale anaerobic digesters [7,8].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.