Abstract

The effect of temperature on granulation and microbial interaction of anaerobic sludges grown in thermophilic upflow anaerobic sludge bed (UASB) reactors was investigated at two different temperatures, 55°C (Run 1) and 65°C (Run 2). Each run consisted of two phases. Phase 1 was conducted by feeding acetate for a period of 200 days. In Phase 2, both reactors were fed a mixture of acetate and sucrose for a further 100 days. During Phase 1, no granulation occurred in the sludge of either run. Microscopic observation revealed that the predominant methanogen was Methanothrix in Run 1, whereas Methanobacterium-like bacteria existed to a significant extent in Run 2. The acetate-utilizing methanogenic activity of both sludges increased with increasing test temperature in the range 55–65°C. Since the acetate-grown sludges exhibited far higher H2-utilizing methanogenic activity than acetate-utilizing methanogenic activity, it is suggested that a syntrophic association of acetate-oxidizing bacteria with hydrogenotrophic methanogens was responsible for a considerable portion of the overall acetate elimination in thermophilic anaerobic sludge. During Phase 2, granules coated with either filamentous bacteria or cocci-type bacteria (both presumably acid-forming bacteria) were successfully established in Run 1 and Run 2, respectively. Since the acetate-utilizing methanogenic activities of the granular sludges were four to five times higher than those of the acetate-grown sludges (Phase 1), the co-existence of these “coating bacteria” appeared to contribute to the enclosing of acetate consumers inside granules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.