Abstract

Rhizosphere and non-rhizosphere soil samples under different long-term fertilization treatments including control without fertilizer (CK), chemical fertilization alone (NPK), rice residues combined with NPK (NPKS), 30% manure plus 70% chemical fertilizers (LOM), and 60% manure plus 40% chemical fertilizers (HOM) were collected from a paddy field in a red soil hilly area in Ningxiang City, Hunan Province, China. The characteristics of microbial carbon utilization in the soils were studied. Results of 18O-H2O tracer analysis showed that both soil microbial biomass carbon content (MBC) and microbial growth rate (CGrowth) were highest in the HOM treatment, whereas they were lowest in CK. In the rhizosphere soil, the highest basal respiration was observed in HOM, and the lowest values were in CK and NPK. Microbial carbon utilization efficiency (CUE) was highest in NPK but lowest in the LOM and HOM treatments. In non-rhizosphere soil, no significant differences between basal respiration and CUE were observed among the fertilization treatments. Results from MicroRespTM showed that the ability of microorganisms to metabolize exogenous carbon sources was higher in non-rhizosphere soil than in rhizosphere soil. The application of organic materials (rice residues or manure) increased the microbial metabolic rate of carboxylic acids, amino acids, and carbohydrates in the order carboxylic acids > amino acids and carbohydrates > complex compounds. Redundancy analysis of the microbial metabolism patterns of various carbon substrates showed that:① CK was well separated from the fertilization treatments; ② NPK was grouped with NPKS, whereas LOM and HOM were grouped together and were separate from NPK and NPKS. This indicates that the fertilization treatments changed the microbial carbon metabolism patterns. The above-mentioned results indicated that the fertilization treatments did not affect microbial CUE and basal respiration. However, exogenous carbon source input (such as root exudates) and the application of organic materials can increase microbial basal respiration, and thus, reduce microbial CUE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call