Abstract

Microbial carbon fixation in saline lakes constitutes an important part of the global lacustrine carbon budget. However, the microbial inorganic carbon uptake rates in saline lake water and its influencing factors are still not fully understood. Here, we studied in situ microbial carbon uptake rates under light-dependent and dark conditions in the saline water of Qinghai Lake using a carbon isotopic labeling (14C-bicarbonate) technique, followed by geochemical and microbial analyses. The results showed that the light-dependent inorganic carbon uptake rates were 135.17–293.02 μg C L−1 h−1 during the summer cruise, while dark inorganic carbon uptake rates ranged from 4.27 to 14.10 μg C L−1 h−1. Photoautotrophic prokaryotes and algae (e.g. Oxyphotobacteria, Chlorophyta, Cryptophyta and Ochrophyta) may be the major contributors to light-dependent carbon fixation processes. Microbial inorganic carbon uptake rates were mainly influenced by the level of nutrients (e.g., ammonium, dissolved inorganic carbon, dissolved organic carbon, total nitrogen), with dissolved inorganic carbon content being predominant. Environmental and microbial factors jointly regulate the total, light-dependent and dark inorganic carbon uptake rates in the studied saline lake water. In summary, microbial light-dependent and dark carbon fixation processes are active and contribute significantly to carbon sequestration in saline lake water. Therefore, more attention should be given to microbial carbon fixation and its response to climate and environmental changes of the lake carbon cycle in the context of climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call