Abstract

Shrub invasion affects plant growth and soil physicochemical properties, resulting in soil microbiota metabolic pathway changes. However, little is known about the shrub expansion intensity of microbial metabolic pathway processes. In this study, we used metagenome sequencing technology to investigate changes in soil microbial C and N metabolic pathways and community structures, along with different shrub invasion intensities, in the Sanjiang Plain wetlands. Different shrub invasion intensities significantly affected the soil microbial composition (β diversity), with no significant effect on the α diversity compared to CK. AN, pH, and TP were the major factors influencing the microbial community's structures. Compared to CK, the shrub expansion intensity did not significantly affect C fixation and central metabolism but significantly reduced methanogenesis, which involves the CO2-to-methane transition that occurs in methane metabolism, and denitrification, the nitrite to nitric oxide (nirK or nirS) transition that occurs in N metabolism. This study provides an in-depth understanding of the biogeochemical cycles of wetland ecosystems in cold northern regions undergoing shrub invasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.