Abstract

Limitation of pharmaceutical application of resveratrol (RSV) and piceatannol (PIC) continue to exist, there is a need to obtain the superior analogs of two stilbenes with promoted activity, stability, and bioavailability. Microbial transformation has been suggested as a common and efficient strategy to solve the above problems. In this study, Beauveria bassiana was selected to transform RSV and PIC. LC-MS and NMR spectroscopies were used to analyze the transformed products and identify their structures. The biological activities of these metabolites were evaluated in vitro with GPR119 agonist and insulin secretion assays. Single factor tests were employed to optimize the biotransformation condition. Three new methylglucosylated derivatives of PIC (1-3) and two known RSV methylglucosides (4 and 5) were isolated and characterized from the fermentation broth. Among them, 1 not only showed moderate GPR119 agonistic activity with 65.9%, but also promoted insulin secretion level significantly (12.94 ng/mg protein/hour) at 1 μM. After optimization of fermentation conditions, the yield of 1 reached 45.53%, which was increased by 4.2-fold compared with the control. Our work presents that 3-O-MG PIC (1), obtained by microbial transformation, is an effective and safer ligand targeting GPR119, which lays a foundation for the anti-diabetic drug design in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.