Abstract
AbstractSoil microbial activity, biomass, and community structure were examined during the transition from oxic to anoxic conditions after the addition of glucose and with or without nitrate addition. In two sets of treatments, samples were incubated for up to 35 d in closed ampoules either aerobically until oxygen was depleted or anoxically throughout the experiment. Heat‐flow rate was monitored to indicate microbial activity. Microbial biomass and community structure were measured by adenylate and phospholipid fatty acid (PFLA) content, and adenylate energy charge (AEC) was used to monitor the physiological status of the microbial biomass.Microbial activity was highest under oxic conditions and abruptly decreased under anoxic conditions. Activity peaks were observed after about 9 d of anoxic conditions probably triggered by increased nutrient availability from dying microbial biomass, but these peaks were smaller after initial oxic incubation or nitrate addition. Microbial biomass was unchanged under oxic conditions but decreased under anoxic conditions. Most surviving microbes switched into dormancy. Changes in the microbial‐population structure were small and occurred only after 9 d of anoxic incubation. The results show that the nutrient status and the availability of electron acceptors such as nitrate were important factors ruling the direction and the extent of shifts in the microbial activity and community structures due to anoxic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.