Abstract

BackgroundMicroorganisms are distributed on surfaces within homes, workplaces, and schools, with the potential to impact human health and disease. University campuses represent a unique opportunity to explore the distribution of microorganisms within built environments because of high human population densities, throughput, and variable building usage. For example, the main campus of the University of Waterloo spans four square kilometres, hosts over 40,000 individuals daily, and is comprised of a variety of buildings, including lecture halls, gyms, restaurants, residences, and a daycare.ResultsRepresentative left and right entrance door handles from each of the 65 buildings at the University of Waterloo were swabbed at three time points during an academic term in order to determine if microbial community assemblages coincided with building usage and whether these communities are stable temporally. Across all door handles, the dominant phyla were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, which comprised 89.0 % of all reads. A total of 713 genera were observed, 16 of which constituted a minimum of 1 % of the 2,458,094 classified and rarefied reads. Archaea were found in low abundance (~0.03 %) but were present on 42.8 % of the door handles on 96 % of buildings across all time points, indicating that they are ubiquitous at very low levels on door handle surfaces. Although inter-handle variability was high, several individual building entrances harbored distinct microbial communities that were consistent over time. The presence of visible environmental debris on a subset of handles was associated with distinct microbial communities (beta diversity), increased richness (alpha diversity), and higher biomass (adenosine 5′-triphosphate; ATP).ConclusionsThis study demonstrates highly variable microbial communities associated with frequently contacted door handles on a university campus. Nonetheless, the data also revealed several building-specific and temporally stable bacterial and archaeal community patterns, with a potential impact of accumulated debris, a possible result of low human throughput, on detected microbial communities.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-015-0135-0) contains supplementary material, which is available to authorized users.

Highlights

  • Microorganisms are distributed on surfaces within homes, workplaces, and schools, with the potential to impact human health and disease

  • Campus door handle communities and human skin We examined alpha and beta diversity of bacteria and archaea on 130 door handles from 65 university buildings over three time points, for a total of 390 samples

  • Included in these additional phyla are a relatively large proportion of sequences affiliated with Cyanobacteria, which have previously been found on classroom walls and floors, attributed to soil and bioaerosol accumulation [20]

Read more

Summary

Introduction

Microorganisms are distributed on surfaces within homes, workplaces, and schools, with the potential to impact human health and disease. For the three centuries, studies of human-associated microorganisms focused on the diversity, morphology, and metabolism of a limited group of cultured isolates. Organisms that were initially cultured from healthy skin in the 1950s include Staphylococcus epidermidis, Micrococcus, and Propionibacterium [2]. The skin microbiota varies between body sites and individuals, exhibiting greater collective diversity than both the human oral cavity and gut [4]. In a survey of skin microbiota, Propionibacteria, Corynebacteria, and Staphylococcus spp. comprised over 62 % of sequences detected across 20 body sites [5]. Corynebacteria spp. associated with moist skin, Propionibacteria and Staphylococcus spp. dominated sebaceous areas, and both Betaproteobacteria and Flavobacteriales were abundant in dry regions. Using 3D molecular cartography maps and a

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call