Abstract

BackgroundThe emerging cellulosic bioethanol industry will generate huge amounts of lignin-rich residues that may be converted into biogas by anaerobic digestion (AD) to increase the output of energy carriers from the biorefinery plants. The carbohydrates fraction of lignocellulosic biomass is degradable, whereas the lignin fraction is generally considered difficult to degrade during AD. The objective of this study was to investigate the feasibility of biogas production by AD from hydrolysis lignin (HL), prepared by steam explosion (SE) and enzymatic saccharification of birch. A novel nylon bag technique together with two-dimensional nuclear magnetic resonance spectroscopy, pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS), and Fourier transform infrared (FTIR) spectroscopy was used to identify recalcitrant and degradable structures in the lignin during AD.ResultsThe HL had a lignin content of 80% which included pseudo-lignin and condensed-lignin structures resulting from the SE pretreatment. The obtained methane yield from HL was almost twofold higher than the theoretical methane from the carbohydrate fraction alone, indicating that part of the lignin was converted to methane. Characterization of the undegradable material after AD revealed a substantial loss of signals characteristic for carbohydrates and lignin–carbohydrate complexes (LCC), indicating conversion of these chemical components to methane during AD. The β-O-4′ linkage and resinol were not modified as such in AD, but major change was seen for the S/G ratio from 5.8 to 2.6, phenylcoumaran from 4.9 to 1.0%, and pseudo-lignin and condensed-lignin were clearly degraded. Scanning electron microscopy and simultaneous thermal analysis measurements demonstrated changes in morphology and thermal properties following SE pretreatment and AD. Our results showed that carbohydrate, LCC, pseudo-lignin, and condensed-lignin degradation had contributed to methane production. The energy yield for the combined ethanol production and biogas production was 8.1 MJ fuel per kg DM of substrate (4.9 MJ/kg from ethanol and 3.2 MJ/kg from methane).ConclusionThis study shows the benefit of using a novel bag technique together with advanced analytical techniques to investigate the degradation mechanisms of lignin during AD, and also points to a possible application of HL produced in cellulosic bioethanol plants.

Highlights

  • The emerging cellulosic bioethanol industry will generate huge amounts of lignin-rich residues that may be converted into biogas by anaerobic digestion (AD) to increase the output of energy carriers from the biorefinery plants

  • The Dry matter (DM) content decreased from 94.8% in untreated birch to 35.0% in steam-exploded birch as steam is added to the biomass during pretreatment

  • The lignin-rich material (HL) obtained after enzymatic extraction of carbohydrates has a potential to be used for biogas production

Read more

Summary

Introduction

The emerging cellulosic bioethanol industry will generate huge amounts of lignin-rich residues that may be converted into biogas by anaerobic digestion (AD) to increase the output of energy carriers from the biorefinery plants. The intended development of 79 billion liters of second-generation biofuels annually by 2022 in the USA would generate about 62 million tons of lignin [1], by far exceeding the current world market for lignin used in specialty products [2] Since all these lignins are not needed for process heat, considerable efforts are underway for generating chemicals and other forms of energy from HL residues [3]. The production of highquality oil fraction from birch HL has been reported using intermediate pyrolysis and low-cost ZSM-5 catalyst downstream process [4] Another possible pathway is anaerobic digestion (AD) of HL into biogas, which could increase the output of fuels and improve the economic profitability of such biorefineries

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.