Abstract

Sustainable energy supplies are needed to supplement and eventually replace fossil fuels. Molecular hydrogen H2 is a clean burning, high-energy fuel that is also used as reducing gas in industrial processes. H2 is mainly synthesized by steam reforming of natural gas, a non-renewable fuel. There are biosynthetic strategies for H2 production; however, they are associated with poor yield and have high cost. The application of an electrochemical driving force in a microbial electrolysis cell (MEC) improves the yield of biological reactions. The performance of the MEC is influenced by experimental parameters such as the electrode material, reactor design, microbial consortia and the substrate. In this review, factors that affect the performance of MECs are discussed and critically analysed. The potential for scale-up of H2 bioelectrosynthesis is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.