Abstract

Merging the disciplines of green chemistry, ecotoxicology and ecology to develop environmentally-friendly industrial chemicals represents a significant collaborative challenge. This challenge can be met by extending already-informative standard toxicity and biodegradability assays to include further information about the potential persistence and biotransformation of pollutants in the environment. Development of ionic liquids (ILs) provides an ideal and proactive test system to determine several levels of environmental impact using academically interesting and industrially relevant green chemical prototypes. In this study, we investigated the biodegradability of three ILs, 1-butyl-3-methylpyridinium bromide, 1-hexyl-3-methylpyridinium bromide and 1-octyl-3-methylpyridinium bromide, by activated sludge microbial communities. We determined that all three ILs could be fully mineralized, but that only the octyl-substituted cation could be classified as “readily biodegradable”. We directly examined biodegradation products of the ILs using reverse-phase high performance liquid chromatography/mass spectrometry and MS/MS methods, and identified several unique preliminary degradation products. Finally, we determined that IL-biodegradation products were less toxic than the initial compound to a standard aquatic test organism, Daphnia magna, suggesting that biodegradation in an aquatic environment would decrease toxicity hazards associated with the initial compound. This study provides further information about pyridinium IL-biodegradation and guidelines to structure future IL design and research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.