Abstract

Microbial degradation of imazaquin {2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid} was monitored by measuring14CO2evolution for 7 months under controlled laboratory conditions. Up to 10% of the14C chain-labeled imazaquin that was applied to a Crowley silt loam was evolved as14CO2in 7 months. Less evolution of14CO2occurred on a Sharkey silty clay, a soil with higher clay and organic matter content, than on silt loam soils. The loss of 66 to 100% of the imazaquin applied to a Crowley silt loam incubated for 8 months at 18 C or 35 C, respectively, suggested that metabolic changes in addition to CO2evolution were occurring. Rapid loss of imazaquin phytotoxicity occurred when soils were held at warm-moist (35 C and −33 kPa) conditions conducive to microbial growth. Imazaquin was more persistent in soils stored under cool, dry (18 C and −100 kPa) conditions. Imazaquin on a soil surface dissipated rapidly when exposed to ultraviolet light or sunlight. Photodecomposition could be a major mode of imazaquin dissipation if this herbicide is allowed to remain on the soil surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.