Abstract

Plant-root-associated microbes influence plant phenotype and tolerance to environmental stress, and thus have been hypothesized to play a role in plant local adaptation. Here, we test this hypothesis with factorial experiments addressing the role of microbes in local adaptation of Hypericum perforatum (St. John's wort) to stressful limestone barrens (alvars) compared to neighboring old-fields. Alvar plants benefited more from microbes in early life history stages, while at later growth stages, alvar and old-field plants benefited equally from microbes but only in the old-field habitat. Patterns of local adaptation were changed by the presence of microbes. Alvar plants grown in association with alvar microbes outperformed old-field plants in the alvar habitat, whereas old-field plants showed patterns of maladaptation when grown with microbes. In this demonstration of microbe-mediated adaptation, we show that rhizosphere microbes can be important for plant fitness and patterns of local adaptation but that those effects are dependent on life-history stage and habitat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call