Abstract

Abstract Particulate carbon (C) degradation in soils is a critical process in the global C cycle governing greenhouse gas fluxes and C storage. Millimeter-scale soil aggregates impose strong controls on particulate C degradation by inducing chemical gradients of e.g., oxygen, as well as limiting microbial mobility in pore structures. To date, experimental models of soil aggregates have incorporated porosity and chemical gradients but not particulate C. Here, we demonstrate a proof-of-concept encapsulating microbial cells and particulate C substrates in hydrogel matrices as a novel experimental model for soil aggregates. Ruminiclostridium cellulolyticum was co-encapsulated with cellulose in millimeter-scale polyethyleneglycol-dimethacrylate (PEGDMA) hydrogel beads. Microbial activity was delayed in hydrogel-encapsulated conditions, with cellulose degradation and fermentation activity being observed after 13 days of incubation. Unexpectedly, hydrogel encapsulation shifted product formation of R. cellulolyticum from an ethanol-lactate-acetate mixture to an acetate-dominated product profile. Fluorescence microscopy enabled simultaneous visualization of the PEGDMA matrix, cellulose particles, and individual cells in the matrix, demonstrating growth on cellulose particles during incubation. Together, these microbe-cellulose-PEGDMA hydrogels present a novel, reproducible experimental soil surrogate to connect single cells to process outcomes at the scale of soil aggregates and ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call