Abstract
Gene expression technologies where nucleic acid sequences remain physically linked to their corresponding gene products are important tools for selection and identification of rare variants in large protein libraries. Here, we describe a gene expression system, which combines the potential of bead-based suspension array technology (SAT) with gene expression and clonal identification. Using streptavidin-coated polystyrene micrometer-sized beads as solid supports for anchored PCR products, we have investigated conditions for cell-free expression and bioaffinity technology to provide clonal co-anchoring of corresponding gene products. Experiments showed that coupled transcription and translation of PCR product expression cassettes resulted in display of affinity-anchored proteins whose binding characteristics could be analyzed via direct and selective interaction with a fluorescently labeled target protein. Interestingly, experiments performed with differently biotinylated PCR products showed that the efficiency of display was dependent on the directionality of the expression cassette relative to the bead surface. In spiked systems, using small immunoglobulin binding proteins as models, we demonstrate efficient flow cytometric sorting of beads corresponding to the target interacting clones, verified by post-sorting analysis and clonal identification at DNA level. The use of this technology, including alternative formats, for different proteomics applications is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.