Abstract
Boxfish with multiple fins can maneuver in confined spaces with a near zero turning radius, and it has been found that its unusual boxy shape is responsible for a self-correcting mechanism that makes its trajectories immune to water disturbances. The microautonomous robotic ostraciiform aims to apply these features in a novel underwater vehicle design. Miniature underwater vehicles with these characteristics have a variety of applications, such as environmental monitoring, ship wreck exploration, inline pipe inspection, forming sensor networks, etc. This paper presents the research leading to the design and fabrication of a robotic ostraciiform. Tail fin hydrodynamics have been investigated experimentally using robotic flapper mechanisms to arrive at a caudal fin shape with optimal-shape-induced flexibility. Fluid simulation studies were utilized to arrive at the body shape that can result in a self-correcting vorticity generation. Finally, the robotic ostraciiform prototype was designed based on the previous results. The ostracifform locomotion is implemented with a pair of 2 DOF pectoral fins and a single DOF tail fin. The finalized body shape of the robot is produced by 3-D prototyping two separate halves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.