Abstract

Chromium-containing steels must be sintered in dry atmospheres with low partial pressures of oxygen, such as nitrogen–hydrogen mixtures. The conventional endogas atmospheres have a potential to carburize the main steel and simultaneously oxidize alloying elements, e.g. Cr and Mn, preventing proper sintering. Fe–1.5% Mn–1.5% Cr–0.25% Mo–0.4% C steel is successfully sintered in flowing technical nitrogen by controlling the local microatmosphere, through the use of semiclosed container/getter/activator combinations. Then, the necessary reducing reactions are induced in the dry microatmosphere within and around the specimens. As manganese has a higher affinity for oxygen than chromium, chromium oxide is reduced by relying only on carbon and manganese in the semi-closed container. Mechanical properties of the specimens sintered in technical nitrogen do not significantly differ from those sintered in dry hydrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call