Abstract

Acute respiratory distress syndrome (ARDS) is a major cause of high mortality and morbidity in critically ill patients. Circular RNAs (CircRNAs) are widely expressed in numerous tissues and are associated with various diseases. However, the role of circRNAs in ARDS remains unclear. In this study, we found that cell viability and proliferation were reduced in lipopolysaccharide (LPS)-induced Beas-2B cells. Microarray analysis identified 1131 differentially expressed circRNAs in LPS-treated Beas-2B cells, with 623 circRNAs significantly upregulated and 508 circRNAs strongly downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant enrichment and indicated potential functions and pathways of differentially expressed circRNAs. Reverse transcription-polymerase chain reaction (RT-PCR) analysis confirmed that expression of circ_2979, circ_5438, circ_4557 and circ_2066 in LPS-induced Beas-2B cells was consistent with the results obtained by RNA sequencing (RNA-seq). Additionally, we recruited 17 patients with ARDS and 13 healthy volunteers and found that expression of circ_2979 in serum was significantly increased in the patients with ARDS compared with healthy volunteers. Spearman's analyses indicated that circ_2979 was correlated with partial pressure of carbon dioxide in arterial blood (PaCO2), the ratio of partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2), interleukin 2 receptor (IL-2R) and fibrinogen (FIB). The results suggested that circRNAs may play an important role in the progression of ARDS, and that circ_2979 may serve as a diagnosis and prognosis biomarker for ARDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call