Abstract

Clostridium difficile is a gram-positive, spore-forming enteric anaerobe which can infect humans and a wide variety of animal species. Recently, the incidence and severity of human C. difficile infection has markedly increased. In this study, we evaluated the genomic content of 73 C. difficile strains isolated from humans, horses, cattle, and pigs by comparative genomic hybridization with microarrays containing coding sequences from C. difficile strains 630 and QCD-32g58. The sequenced genome of C. difficile strain 630 was used as a reference to define a candidate core genome of C. difficile and to explore correlations between host origins and genetic diversity. Approximately 16% of the genes in strain 630 were highly conserved among all strains, representing the core complement of functional genes defining C. difficile. Absent or divergent genes in the tested strains were distributed across the entire C. difficile 630 genome and across all the predicted functional categories. Interestingly, certain genes were conserved among strains from a specific host species, but divergent in isolates with other host origins. This information provides insight into the genomic changes which might contribute to host adaptation. Due to a high degree of divergence among C. difficile strains, a core gene list from this study offers the first step toward the construction of diagnostic arrays for C. difficile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.