Abstract
Although numerous long non-coding RNAs (lncRNAs) have been identified to be important in human cancer, their potential regulatory roles in epithelial tumorigenesis and tumor progression in ovarian cancer remain unclear. The purpose of the present study was to investigate lncRNAs that were differentially expressed (DE) in epithelial ovarian cancer and to explore their potential functions. The lncRNA profiles in five pairs of human epithelial ovarian cancer tissues and their adjacent normal tissues were described using microarrays. The results of the microarray analysis revealed that 672 upregulated and 549 downregulated (fold-change ≥2.0) lncRNAs were DE between the cancerous and normal tissues. Reverse transcription-quantitative polymerase chain reaction was used to validate the microarray results using four upregulated (RP11-1C1.7, XLOC_003286, growth arrest-specific 5 and ZNF295-AS1) and four downregulated (protein tyrosine kinase 7, maternally expressed gene 3, AC079776.2 and ribosomal protein lateral stalk subunit P0 pseudogene 2) lncRNAs. Furthermore, gene ontology and pathway analyses were used to carry out functional analyses of the candidate genes of DE lncRNAs. The results identified lncRNAs with significantly altered expression profiles in human epithelial ovarian cancer cells compared with those in adjacent normal cells. These data offer new insights into the occurrence and development of epithelial ovarian cancer, and these lncRNAs may provide novel molecular biomarkers for further research on epithelial ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.