Abstract

We have developed an array-based resequencing method to determine genetic alterations in putative cancer genes. The method relies on that the specificity of DNA polymerase in allele-specific extensions can be enhanced by terminating the extension reactions with apyrase and that a tiling set of primers are synthesized covering the investigated gene sequence. We report on such apyrase-mediated allele-specific primer extension (AMASE) assay as a method suitable for high-throughout resequencing and mutation detection in tumor suppressor genes and oncogenes. In the experimental setup, primers complementary to codons 12, 13 and codon 61 of the N-ras proto-oncogene were spotted onto glass slides. Overlapping sense and anti-sense primers were designed so that complementary primers for all possible mutations in each base position were investigated. The extension reactions were performed in a single step following hybridization of target DNA to the immobilized primers on the array surface. Mutation detection limits and the possibility of quantifying the mutations were investigated using synthetic oligonucleotides. In addition, 64 clinical samples were sequenced and 16 of these showed mutations in the N-ras gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call