Abstract

Several biomaterials have been widely used in bone regeneration/substitution procedures in orthopedic and oral surgery. However, how these biomaterials alter osteoblast gene expression is poorly understood. We therefore attempted to address this question by using cDNA microarray technique to identify genes that are differentially regulated in osteoblasts exposed to biomaterials comprehending the biocompatibility spectrum of bioactive (bioglass and hydroxyapatite), bioinert (Ti and stainless steel), and biotolerant (polymethylmethacrylate). By using a cDNA microarray containing 687 human IMAGE sequences, we identified in primary cultures of osteoblastic cells differentiated from the human bone marrow and exposed to these biomaterials, genes whose expression was significantly upregulated or downregulated. Among the differentially expressed genes we have found those involved with cell cycle regulation, cell differentiation and proliferation, apoptosis, cell adhesion, bone mineralization and skeletal development. These results can be relevant to a better understanding of the molecular mechanism underlying the behavior of osteoblasts in bone regenerative procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.