Abstract

Retinoids, the natural and synthetic derivatives of vitamin A, have a role in cancer treatment and prevention. There is a need to reveal mechanisms that account for retinoid response or resistance. This study identified candidate all-trans-retinoic acid (RA) target genes linked to growth suppression in BEAS-2B human bronchial epithelial cells. Microarray analyses were performed using Affymetrix arrays. A total of 11 RA-induced species were validated by reverse transcription polymerase chain reaction (RT-PCR), Western or Northern analyses. Three of these species were novel candidate RA-target genes in human bronchial epithelial cells. These included: placental bone morphogenetic protein (PLAB), polyamine oxidase isoform 1 (PAOh1) and E74-like factor 3 (ELF3). Expression patterns were studied in RA-resistant BEAS-2B-R1 cells. In BEAS-2B-R1 cells, RA dysregulated the expression of the putative lymphocyte G0/G1 switch gene (G0S2), heme oxygenase 1 (HMOX1), tumor necrosis factor-alpha-induced protein 2 (TNFAIP2), inhibitor of DNA binding 1(Id1), fos-like antigen 1 (FOSL1), transglutaminase 2 (TGM2), asparagine synthetase (ASNS), PLAB, PAOh1 and ELF3, while prominent induction of insulin-like growth-factor-binding protein 6 (IGFBP6) still occurred. In summary, this study identified 11 candidate RA-target genes in human bronchial epithelial cells including three novel species. Expression studies in BEAS-2B-R1 cells indicated that several were directly implicated in RA signaling, since their aberrant expression was linked to RA resistance of human bronchial epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call