Abstract
Chelerythrine (a natural quaternary benzophenanthridine alkaloid) is an extract from the roots of Chelidonium majus with potential antimycobacterial activity. To reveal the possible mechanism of action of chelerythrine against Mycobacterium tuberculosis (M. tuberculosis), commercial oligonucleotide microarrays were used to analyze the genome-wide transcriptional changes triggered by treatment with subinhibitory concentrations of chelerythrine. Quantitative real-time RT-PCR was performed for selected genes to verify the microarray results. We interpreted our microarray data using Agilent software. Analysis of the microarray data revealed that a total of 759 genes were differentially regulated by chelerythrine. Of these, 372 genes were upregulated, and 387 genes were downregulated. Some of the important genes that were significantly regulated are related to different pathways (such as urease), methoxy-mycolic acid synthase, surface-exposed lipids, the heat shock response, and protein synthesis. This genome-wide transcriptomics approach produced the first insights into the response of M. tuberculosis to a chelerythrine challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.