Abstract

To compare the genetic profiles of 'healthy' bladder smooth muscle cells (SMCs) and exstrophic SMCs (ESMCs) to identify genes that are over- and under-expressed in ESMCs, thus providing a molecular evaluation of the quality and therapeutic potential of ESMC tissue. Classical bladder exstrophy is a rare disorder, occurring in 1 in 30,000 live births. Studies have shown that exstrophic bladders are developmentally immature at birth. After surgical closure, the bladder typically undergoes abnormal remodelling (such as over-expression of collagen III) throughout early development. We hypothesized that the predominant genetic differences between normal SMCs and ESMCs are in the developmental genes. This hypothesis was tested by the use of microarray analysis. Bladder SM biopsies were taken from 'healthy' subjects undergoing bladder surgeries for other conditions (for example, urinary reflux) and patients with bladder exstrophy. Cells were expanded in vitro, and total RNA was isolated and hybridized to the Affymetrix U133A GeneChip (Affymetrix Inc., Santa Clara, CA, USA) by the Wake Forest University School of Medicine Affymetrix core facility, using standard protocols. We created a genetic signature consisting of 961 genes that are over-expressed and 432 genes that are under-expressed in ESMCs. Analysis of these signatures identified an over-expression of inflammatory genes and an under-expression of developmental genes. Our data is in concordance with previous studies and histological data showing that ESMCs are developmentally immature relative to healthy bladder SM. The clinical implication of the ESMC genetic signature is that it provides a list of targets that can be (i) manipulated ex vivo and/or in vivo to induce differentiation (the completion of development) and (ii) used as biomarkers to explain the variability of the clinical symptoms after surgical closure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.